Smallest Subtree with All Deepest Nodes

Posted in

Smallest Subtree with All Deepest Nodes
vinaykhatri

Vinay Khatri
Last updated on February 10, 2025

Problem

Given a binary tree, return the smallest subtree that has all the deepest nodes of the original tree. The deepest node is a node having maximum depth in the tree. You only need to return the root of the output subtree in the code.

Sample Input

Sample Output

20

Explanation

The deepest nodes are ‘15’ and ‘7,’ and the root of this smallest subtree is ‘20’

Approach

Using DFS, traverse the Binary Tree recursively. Determine the depth of each node's left and right subtrees. Traverse the left subtree if the depth of the left subtree is greater than the depth of the right subtree. Traverse the right subtree if the depth of the right subtree is greater than the depth of the left subtree. Otherwise, return the currently selected node.

Complexity Analysis

The time complexity is O(N), and the space complexity is also O(N)

C++ Programming

#include <bits/stdc++.h>
using namespace std;

struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;

    TreeNode(int data)
    {
        this->val = data;
        left = NULL;
        right = NULL;
    }
};

int getDepth(TreeNode* root)
{
    if (!root)
        return 0;

    // If current node is a leaf node
    if (root->left == NULL
        && root->right == NULL)
        return 1;

    return max(getDepth(root->left),
            getDepth(root->right))
        + 1;
}

void solve(TreeNode* root, TreeNode*& ans)
{
    if (!root)
        return;

    // height of left subtree
    int left = getDepth(root->left);

    // height of right subtree
    int right = getDepth(root->right);

    // If height of left subtree is more
    if (left > right) {
        // Traverse left subtree
        solve(root->left, ans);
    }

    // If height of right subtree is more
    else if (right > left) {
        solve(root->right, ans);
    }

    else {

        // Return current node
        ans = root;
        return;
    }
}

int main()
{
    struct TreeNode* root= new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);

    TreeNode* ans = NULL;
    solve(root, ans);

    cout << ans->val;

    return 0;
}

Output

1

Java Programming

import java.util.*;
class Solution
{

static class TreeNode
{
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int data)
    {
        this.val = data;
        left = null;
        right = null;
    }
};


static int getDepth(TreeNode root)
{
    if (root == null)
        return 0;

    // If current node is a leaf node
    if (root.left == null  && root.right == null)
        return 1;

    return Math.max(getDepth(root.left),getDepth(root.right)) + 1;
}

static TreeNode solve(TreeNode root, TreeNode ans)
{
    if (root == null)
        return ans;

    // height of left subtree
    int left = getDepth(root.left);

    // height of right subtree
    int right = getDepth(root.right);

    // If height of left subtree is more
    if (left > right)
    {
        // Traverse left subtree
        ans = solve(root.left, ans);
    }

    // If height of right subtree is more
    else if (right > left)
    {
        ans = solve(root.right, ans);
    }

    else
    {
        ans = root;
        return ans;
    }
    return ans;
}

public static void main(String[] args)
{
    TreeNode root = new TreeNode(1);

    root.left = new TreeNode(2);

    root.right = new TreeNode(3);

    TreeNode ans = null;

    ans = solve(root, ans);

    System.out.print(ans.val);

}
}

Output

1

Python Programming

class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None

def getDepth(root):
    if (not root):
        return 0

    # If current node is a leaf node
    if (root.left == None and root.right == None):
        return 1

    return max(getDepth(root.left), getDepth(root.right)) + 1

def solve(root):
    global ans

    if (not root):
        return

    # Stores height of left subtree
    left = getDepth(root.left)

    # Stores height of right subtree
    right = getDepth(root.right)

    # If height of left subtree is more
    if (left > right):
        # Traverse left subtree
        solve(root.left)

    # If height of right subtree is more
    elif (right > left):
        solve(root.right)

    else:
        ans = root
        return

root = TreeNode(1)

root.left = TreeNode(2)

root.right = TreeNode(3)

ans = None

solve(root)

print(ans.val)

Output

1

People are also reading:

Leave a Comment on this Post

0 Comments